

Longitudinal Beam Tomography by Monte Carlo Method

Chandra Bhat

RR Group Meeting September 26, 2007

Chandra Bhat

Motivation

- Get realistic longitudinal phase space distribution of the beam particles in an arbitrary rf bucket in a circular accelerator/storage ring
- Extract longitudinal emittance

Monte-Carlo Beam Longitudinal Tomography

- Used Monte-Carlo technique to make longitudinal tomography of Recycler Beam ← the technique is quite standard in HEP data analysis and in other fields.
- Inputs:
 - Machine parameters
 - □ RF wave forms
- Data to compare with
 - > RWM (Recycler Wall Current Monitor data) Generally this should be sufficient to get the tomography (Alexey Burov)
 - > Recycler Schottky data (Longitudinal Spectra: ungated and gated)
- Equations of motion in $(\Delta E, \Delta t)$ -phase space

$$\frac{d\tau}{dt} = -\eta \frac{2\pi \Delta E}{T_0 \beta^2 E_0} \quad \text{and} \quad \frac{d(\Delta E)}{dt} = \frac{eV(\tau)}{T_0}$$

Monte-Carlo Beam Longitudinal Tomography

- Random Population of the beam particles in $(\Delta E, \Delta t)$ -phase space This is where the Monte Carlo nature of the problem solving enters in the whole enterprise
 - ☐ Use Schottky and RWM data to guide you to decide what type of initial distribution to use and get final beam tomography.
- How one gets beam Tomography
 - ☐ Start with single-particle beam dynamics
 - □ Model other collective effects if they are important
 - > space charge effects
 - > Broad band impedances \leftarrow
 - > Beam loading effects
 - > Cavity phase and voltage modulation effects

 not used in the current case
 - > etc.
- This is a simple minded and straight forward technique with lots of patience.
- This work started in 2002
 - □ C. M. Bhat and J. Marriner, PAC2003, (2003) page 514.

Monte-Carlo Beam Longitudinal Tomography

- Used two different 2D-programs
 - Developed a simple computer program that uses the equations of motion (Bill Ng, original program). Modified it to incorporate e-cool and stochastic cooling (thanks to Dan, Lionel and Sasha).
 - □ ESME ← All the results in today's presentation are based upon the ESME simulations.
 - \triangleright Current: Used measured data to construct the ($\triangle E, \triangle t$)-phase space distribution of the particles.
 - > Past: Start with a ideal distribution and ideal rf waveform. Follow the evolution of the phase-space distributions and learn about beam dynamics.
- What we need is, a 6D program to get complete tomography of the beam.

Examples

- Beam in a standard "Cold barrier bucket"
- Beam in "Compound bucket"
- Case of "Phase-space Coating"

122E10 pbars in Cold Barrier Bucket

Recycler Schottky

F_rev=89811.242 Hz
Intens= 12.795 E11
Dp(sig)= 3.5954 MeV/c
Dp(90%)=12.0243 MeV/c
emit11(95%)= 86.3760 eVTsep1= 5.8513 usec
H_tune= 0.4455
H_emit= 6.224 p-mm-mrad
V_tune= 0.4491
V_emit= 5.993 p-mm-mrad
Beam =12.157 E11
n_avg = 64

Chandra Bhat

122E10 pbars in Cold Barrier Bucket (cont.)

RMSW_{Sim}=3.7 MeV

RMSW_{Meas}=3.8 MeV

Current: LE(95%) = 82.9 eVs

-50

-70

204E10 pbar "Cold Beam"

Compound Bucket

Recycler Schottky -46 -57 -69 -69 -92 -04/19/07 1832 -040 -24 -8 8 24 40 Frequency (kHz)

Compound Bkt Core

Chandra Bhat

Compound Bkt tail

122E10 pbars Compound Bucket (cont.)

 $\begin{array}{l} {\rm RMSW_{Sim}}\text{=}2.7~{\rm MeV} \\ {\rm RMSW_{Meas}}\text{=}2.9~{\rm MeV} \end{array}$

-50

-60

Chandra Bhat

122E10 pbars Compound Bucket (cont.)

Core

 $RMSW_{Sim}$ =2.62 MeV $RMSW_{Meas}$ =2.45 MeV

Current: LE(95%) = 30.2 eVs

Tail

 $RMSW_{Sim}$ =4.8 MeV $RMSW_{Meas}$ =3.5 MeV

Longitudinal Phase space Coating

Longitudinal Phase space Coating Protons

(Simulations with space Charge effects)

Chandra Bhat

(work in Progress)

Chandra Bhat

Pros & Cons and Issues

- This method (in principle) gives accurate representation of the phase-space distribution of the beam in an RF bucket, i.e., Beam Tomography. Hence, one can estimate emittance quite accurately.
- Issues:
 - □ Statistics versus computation time
 - □ What is 95% longitudinal emittance for a compound bucket or for a more complex bucket. Notice that at 600E10 about 30 E10 beam will be outside the 95% region